66 research outputs found

    Mobile technology offers novel insights into the control and treatment of allergic rhinitis : The MASK study

    Get PDF
    Background: Mobile health can be used to generate innovative insights into optimizing treatment to improve allergic rhinitis (AR) control. Objectives: A cross-sectional real-world observational study was undertaken in 22 countries to complement a pilot study and provide novel information on medication use, disease control, and work productivity in the everyday life of patients with AR. Methods: A mobile phone app (Allergy Diary, which is freely available on Google Play and Apple stores) was used to collect the data of daily visual analogue scale (VAS) scores for (1) overall allergic symptoms; (2) nasal, ocular, and asthma symptoms; (3) work; and (4) medication use by using a treatment scroll list including all allergy medications (prescribed and over-the-counter) customized for 22 countries. The 4 most common intranasal medications containing intranasal corticosteroids and 8 oral H-1-antihistamines were studied. Results: Nine thousand one hundred twenty-two users filled in 112,054 days of VASs in 2016 and 2017. Assessment of days was informative. Control of days with rhinitis differed between no (best control), single (good control for intranasal corticosteroid-treated days), or multiple (worst control) treatments. Users with the worst control increased the range of treatments being used. The same trend was found for asthma, eye symptoms, and work productivity. Differences between oral H-1-antihistamines were found. Conclusions: This study confirms the usefulness of the Allergy Diary in accessing and assessing behavior in patients with AR. This observational study using a very simple assessment tool (VAS) on a mobile phone had the potential to answer questions previously thought infeasible.Peer reviewe

    Digital transformation of health and care to sustain Planetary Health : The MASK proof-of-concept for airway diseases-POLLAR symposium under the auspices of Finland's Presidency of the EU, 2019 and MACVIA-France, Global Alliance against Chronic Respiratory Diseases (GARD, WH0) demonstration project, Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF
    In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact Planetary Health. The Good Practice of DG Sante (The Directorate-General for Health and Food Safety) on digitally-enabled, patient-centred care pathways is in line with the objectives of the Finnish Allergy Programme. The ARIACARE-Digital network has been deployed in 25 countries. It represents an example of the digital cross-border exchange of real-world data and experience with the aim to improve patient care. The integration of information technology tools for climate, weather, air pollution and aerobiology in mobile Health applications will enable the development of an alert system. Citizens will thus be informed about personal environmental threats, which may also be linked to indicators of Planetary Health and sustainability. The digital transformation of the public health policy was also proposed, following the experience of the Agency for Health Quality and Assessment of Catalonia (AQuAS).Peer reviewe

    Mobile Technology in Allergic Rhinitis : Evolution in Management or Revolution in Health and Care?

    Get PDF
    Smart devices and Internet-based applications (apps) are largely used in allergic rhinitis and may help to address some unmet needs. However, these new tools need to first of all be tested for privacy rules, acceptability, usability, and cost-effectiveness. Second, they should be evaluated in the frame of the digital transformation of health, their impact on health care delivery, and health outcomes. This review (1) summarizes some existing mobile health apps for allergic rhinitis and reviews those in which testing has been published, (2) discusses apps that include risk factors of allergic rhinitis, (3) examines the impact of mobile health apps in phenotype discovery, (4) provides real-world evidence for care pathways, and finally (5) discusses mobile health tools enabling the digital transformation of health and care, empowering citizens, and building a healthier society. (C) 2019 American Academy of Allergy, Asthma & ImmunologyPeer reviewe

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Correlation between work impairment, scores of rhinitis severity and asthma using the MASK-air (R) App

    Get PDF
    Background In allergic rhinitis, a relevant outcome providing information on the effectiveness of interventions is needed. In MASK-air (Mobile Airways Sentinel Network), a visual analogue scale (VAS) for work is used as a relevant outcome. This study aimed to assess the performance of the work VAS work by comparing VAS work with other VAS measurements and symptom-medication scores obtained concurrently. Methods All consecutive MASK-air users in 23 countries from 1 June 2016 to 31 October 2018 were included (14 189 users; 205 904 days). Geolocalized users self-assessed daily symptom control using the touchscreen functionality on their smart phone to click on VAS scores (ranging from 0 to 100) for overall symptoms (global), nose, eyes, asthma and work. Two symptom-medication scores were used: the modified EAACI CSMS score and the MASK control score for rhinitis. To assess data quality, the intra-individual response variability (IRV) index was calculated. Results A strong correlation was observed between VAS work and other VAS. The highest levels for correlation with VAS work and variance explained in VAS work were found with VAS global, followed by VAS nose, eye and asthma. In comparison with VAS global, the mCSMS and MASK control score showed a lower correlation with VAS work. Results are unlikely to be explained by a low quality of data arising from repeated VAS measures. Conclusions VAS work correlates with other outcomes (VAS global, nose, eye and asthma) but less well with a symptom-medication score. VAS work should be considered as a potentially useful AR outcome in intervention studies.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Associations of Air Pollution on the Brain in Children: A Brain Imaging Study

    No full text
    INTRODUCTION: Epidemiological studies are highlighting the negative effects of the exposure to air pollution on children's neurodevelopment. However, most studies assessed children's neurodevelopment using neuropsychological tests or questionnaires. Using magnetic resonance imaging (MRI) to precisely measure global and region-specific brain development would provide details of brain morphology and connectivity. This would help us understand the observed cognitive and behavioral changes related to air pollution exposure. Moreover, most studies assessed only a few air pollutants. This project investigates whether air pollution exposure to many pollutants during pregnancy and childhood is associated with the morphology and connectivity of the brain in school-age children and pre-adolescents. METHODS: We used data from the Generation R Study, a population-based birth cohort set up in Rotterdam, the Netherlands in 2002-2006 (n = 9,610). We used land-use regression (LUR) models to estimate the levels of 14 air pollutants at participant's homes during pregnancy and childhood: nitrogen oxides (NOx), nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5), PM between 10 μm and 2.5 μm (PMCOARSE), absorbance of the PM2.5 fraction - a measure of soot (PM2.5absorbance), the composition of PM2.5 such as polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), copper (Cu), iron (Fe), silicon (Si), zinc (Zn), and the oxidative potential of PM2.5 evaluated using two acellular methods: dithiothreitol (OPDTT) and electron spin resonance (OPESR). We performed MRI measurements of structural morphology (i.e., brain volumes, cortical thickness, and cortical surface area) using T1-weighted images in 6- to 10-year-old school-age children and 9- to 12-year-old pre-adolescents, structural connectivity (i.e., white matter microstructure) using diffusion tensor imaging (DTI) in pre-adolescents, and functional connectivity (i.e., connectivity score between brain areas) using resting-state functional MRI (rs-fMRI) in pre-adolescents. We assessed cognitive function using the Developmental Neuropsychological Assessment test (NEPSY-II) in school-age children. For each outcome, we ran regression analysis adjusted for several socioeconomic and lifestyle characteristics. We performed single-pollutant analyses followed by multipollutant analyses using the deletion/substitution/addition (DSA) approach. RESULTS: The project has air pollution and brain MRI data for 783 school-age children and 3,857 pre-adolescents. First, exposure to air pollution during pregnancy or childhood was not associated with global brain volumes (e.g., total brain, cortical gray matter, and cortical white matter) in school-age children or pre-adolescents. However, higher pregnancy or childhood exposure to several air pollutants was associated with a smaller corpus callosum and hippocampus, and a larger amygdala, nucleus accumbens, and cerebellum in pre-adolescents, but not in school-age children. Second, higher exposure to several air pollutants during pregnancy was associated with a thinner cortex in various regions of the brain in both school-age children and pre-adolescents. Higher exposure to air pollution during childhood was also associated with a thinner cortex in a single region in pre-adolescents. A thinner cortex in two regions mediated the association between higher exposure to air pollution during pregnancy and an impaired inhibitory control in school-age children. Third, higher exposure to air pollution during childhood was associated with smaller cortical surface areas in various regions of the brain except in a region where we observed a larger cortical surface area in pre-adolescents. In relation to brain structural connectivity, higher exposure to air pollution during pregnancy and childhood was associated with an alteration in white matter microstructure in pre-adolescents. In relation to brain functional connectivity, a higher exposure to air pollution, mainly during pregnancy and early childhood, was associated with a higher brain functional connectivity among several brain regions in pre-adolescents. Overall, we identified several air pollutants associated with brain structural morphology, structural connectivity, and functional connectivity, such as NOx, NO2, PM of various size fractions (i.e., PM10, PMCOARSE, and PM2.5), PM2.5absorbance, PAHs, OC, three elemental components of PM2.5 (i.e., Cu, Si, Zn), and the oxidative potential of PM2.5. CONCLUSIONS: The results of this project suggest that exposure to air pollution during pregnancy and childhood play an adverse role in brain development. We observed this relationship even at levels of exposure that were below the European Union legislations. We acknowledge that identifying the independent effects of specific pollutants was particularly challenging. Most of our conclusions generally refer to traffic-related air pollutants. However, we did identify pollutants specifically originating from brake linings, tire wear, and tailpipe emissions from diesel combustion. The current direction toward innovative solutions for cleaner energy vehicles is a step in the right direction. However, our findings indicate that these measures might not be completely adequate to mitigate health problems attributable to traffic-related air pollution, as we also observed associations with markers of brake linings and tire wear

    Traffic-related air pollution and spectacles use in schoolchildren

    No full text
    s Metrics Comments Related Content Abstract Introduction Materials and methods Results Discussion Conclusions Supporting information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage (0) Figures Abstract Purpose To investigate the association between exposure to traffic-related air pollution and use of spectacles (as a surrogate measure for myopia) in schoolchildren. Methods We analyzed the impact of exposure to NO2 and PM2.5 light absorbance at home (predicted by land-use regression models) and exposure to NO2 and black carbon (BC) at school (measured by monitoring campaigns) on the use of spectacles in a cohort of 2727 schoolchildren (7–10 years old) in Barcelona (2012–2015). We conducted cross-sectional analyses based on lifelong exposure to air pollution and prevalent cases of spectacles at baseline data collection campaign as well as longitudinal analyses based on incident cases of spectacles use and exposure to air pollution during the three-year period between the baseline and last data collection campaigns. Logistic regression models were developed to quantify the association between spectacles use and each of air pollutants adjusted for relevant covariates. Results An interquartile range increase in exposure to NO2 and PM2.5 absorbance at home was respectively associated with odds ratios (95% confidence intervals (CIs)) for spectacles use of 1.16 (1.03, 1.29) and 1.13 (0.99, 1.28) in cross-sectional analyses and 1.15 (1.00, 1.33) and 1.23 (1.03, 1.46) in longitudinal analyses. Similarly, odds ratio (95% CIs) of spectacles use associated with an interquartile range increase in exposures to NO2 and black carbon at school was respectively 1.32 (1.09, 1.59) and 1.13 (0.97, 1.32) in cross-sectional analyses and 1.12 (0.84, 1.50) and 1.27 (1.03, 1.56) in longitudinal analyses. These findings were robust to a range of sensitivity analyses that we conducted. Conclusion We observed increased risk of spectacles use associated with exposure to traffic-related air pollution. These findings require further confirmation by future studies applying more refined outcome measures such as quantified visual acuity and separating different types of refractive errors
    corecore